

To account for amendments to CISPR 16-1-2

For the reference AMN the voltage across the impedance (with Z_{nom} = 50 Ω //50 μ H for 0,15 – 30 MHz and Z_{eut} = source impedance) is

$$V_{\text{nom}} = \frac{Z_{\text{nom}}}{Z_{\text{eut}} + Z_{\text{nom}}} V_0 = \frac{(1 + \Gamma_{\text{nom}})(1 - \Gamma_{\text{eut}})}{2(1 - \Gamma_{\text{nom}}\Gamma_{\text{eut}})} V_0$$

For the real artificial network (AN) the deviation from Z_{nom} must be considered:

$$\Gamma_{\rm nom} = \frac{Z_{\rm nom} - Z_0}{Z_{\rm nom} + Z_0} \qquad \qquad \Gamma_{\rm eut} = \frac{Z_{\rm eut} - Z_0}{Z_{\rm eut} + Z_0} \qquad \qquad \Gamma_{\rm an} = \frac{Z_{\rm an} - Z_0}{Z_{\rm an} + Z_0}$$

The maximum deviation from the magnitude is 20%, from the phase is 11,5°

ROHDE&SCHWARZ

$$V_{\rm an} = \frac{Z_{\rm an}}{Z_{\rm eut} + Z_{\rm an}} V_0 = \frac{(1 + \Gamma_{\rm an})(1 - \Gamma_{\rm eut})}{2(1 - \Gamma_{\rm an}\Gamma_{\rm eut})} V_0$$

Voltage deviation: V_{an} and V_{nom} must be compared

9 Manfred Stecher, February 2009

<section-header><list-item><list-item><list-item><equation-block><equation-block><equation-block><equation-block><equation-block>

Frequency	resistive	reactive	magnitude (nom.)	magnitude (act.)	Phase (act.).	Max. dev.
kHz	Ω	Ω	Ω	Ω	٥	dB
9	4,66	2,33	5,21	4,71	+17,17	-1,63/0
15	4,69	2,58	5,36	6,55	+32,24	-0,74/0
20	5,13	5,13	7,25	7,20	+39,89	-0,91/0
50	7,97	12,00	14,41	13,74	+54,27	-0,90/0
70	10,81	15,67	19,04	18,16	+53,80	-0,79/0
100	15,73	19,5	25,11	23,90	+50,16	-0,69/0
150	23,79	22,46	32,72	31,25	+42,84	-0,51/0
159	25,00	25,00	35,35	32,36	+41,99	-0,44/0
200	30,61	24,36	39,12	36,11	+36,54	-0,44/0
500	45,40	14,45	47,64	45,76	+18,01	-0,27/0
700	47,54	10,81	48,76	47,21	+13,30	-0,24/0
1000	48,76	7,76	49,38	48,06	+9,67	-0,22/0
2000	49,69	3,95	49,64	48,77	+5,52	-0,20/0
5000	49,95	1,59	49,97	49,14	+3,87	-0,24/0
7000	49,97	1,14	49,99	49,35	+4,24	-0,40/0
10000	49,99	0,79	49,99	49,59	+4,60	-0,30/0
15000	49,99	0,53	50,00	49,94	+5,86	0/+0,42
20000	50,00	0,40	50,00	50,39	+6,76	0/+0,54
25000	50,00	0,32	50,00	50,45	+7,72	0/+0,64
30000	50,00	0,27	50,00	50,51	+8,42	0/+0,71

ſ

To account for amendments to CISPR 16-1-3

◆In disturbance power measurements, apart from the uncertainty of the clamp factor itself, a strong influence is caused by the environment, i.e. the absorbing clamp test site.

◆Therefore a validation method has been developed and published in CISPR 16-1-3, where the clamp factor measured in situ is compared to the clamp factor measured on a reference site.

